Cubes and Cube Roots Worksheet

Name \qquad Date \qquad Period \qquad

What does it mean to "cube" a number?
Fill in the chart:

$1^{3}=$	$2^{3}=$	$3^{3}=$	$4^{3}=$	$5^{3}=$
$6^{3}=$	$7^{3}=$	$8^{3}=$	$9^{3}=$	$10^{3}=$

The inverse of cubing a number is....

| $\sqrt[3]{8}=$ | $\sqrt[3]{5} 125=$ | $\sqrt[3]{64}=$ |
| :--- | :--- | :--- | :--- |

How do you find the cube root of a non-perfect cube?

Example: what is the cube root of $\mathbf{3 0}$?
Well, $3 \times 3 \times 3=27$ and $4 \times 4 \times 4=64$, so we can guess the answer is between 3 and 4 .

- Let's try $3.5: 3.5 \times 3.5 \times 3.5=42.875$
- Let's try $3.2: 3.2 \times 3.2 \times 3.2=32.768$
- Let's try 3.1: $3.1 \times 3.1 \times 3.1=29.791$

We are getting closer, but very slowly ... at this point, I get out my calculator and it says:

$$
3.1072325059538588668776624275224
$$

... but the digits just go on and on, without any pattern. So even the calculator's answer is only an approximation!

Practice: What 2 perfect cubes does $\sqrt[3]{89}$ fall between?
Practice: Rounded to the nearest hundredth, what is the $\sqrt[3]{102}$?

Asfignment:

Write the square or cube of each number.
A. $4^{2}=$ \qquad
B. $6^{3}=$ \qquad
C. $10^{3}=$ \qquad
D. $20^{2}=$ \qquad
E. $8^{3}=$ \qquad
F. $17^{2}=$ \qquad
\qquad
\qquad
$7^{2}=\square$
$15^{3}=$
L
$5^{3}=$ \qquad $14^{2}=$ \qquad
$24^{3}=$ \qquad
$19^{3}=$ \qquad
$13^{2}=$ \qquad
$48^{2}=$ \qquad
$25^{3}=$ \qquad
$37^{2}=$ \qquad

Write the square root.
G. $36=6^{2} 64=$ \qquad $81=-25=$ \qquad $324=-\quad 529=$ \qquad
H. $100=\ldots \quad 49=$ \qquad
\qquad $121=$ \qquad $1,600=$ \qquad
I. $400=$ \qquad $225=$ \qquad $625=$ \qquad $144=$ \qquad $900=\quad 2,500=$ \qquad

Write the cube root.
J. $125=-5^{3} \quad 1,000=$ \qquad $64=$ \qquad $27=$ \qquad 8 = \qquad $216=$ \qquad
K. $512=$ \qquad $1,728=$ \qquad $2,744=$ \qquad $343=$ \qquad $8,000=$ \qquad $6,859=$ \qquad

Use the chart on the back to determine which two whole numbers the non-perfect cube falls between:
$\sqrt[3]{200}$ is between \qquad and \qquad .
$\sqrt[3]{4}$ is between \qquad and \qquad .
$\sqrt[3]{ } 1,058$ is between \qquad and \qquad .
$\sqrt[3]{ } 65$ is between \qquad and \qquad .
$\sqrt[3]{2}, 201$ is between \qquad and \qquad .

Using your calculator and rounding to the nearest hundredth, write the cube root:
$\sqrt[3]{200}=$ \qquad
$\sqrt[3]{4}=$ \qquad
$\sqrt[3]{11,058}=$ \qquad
$\sqrt[3]{65}=$ \qquad
$\sqrt[3]{2,201}=$ \qquad

